Answer:
ΔK = 24 joules.
Explanation:
Δ
Work done on the object
Work is equal to the dot product of force supplied and the displacement of the object.
* Δ
Δ
can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δ
= (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).
This gives us
*
=
=
J
Answer:
180°
Explanation:
Friction, if it exists, ALWAYS opposes motion or attempted motion.
3.39 x 10^-13
Please mark brainliest!
Answer:
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Explanation:
In this exercise you are asked to observe the change in velocity in a projectile launch.
If we assume that the friction force is small, the velocity in the x-axis must be constant
vₓ = v₀ₓ
Therefore, the arrow (red) that represents this movement must not change in magnitude.
In the direction of the y axis, the acceleration of gravity is acting, so the magnitude of the velocity in this axis changes
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Answer:
Positively charged particle trajectories always follow electric field lines because the electric force on a positively charged particle is in the same direction as the electric field.
Explanation:
For any positive charge the electric field emerges radially outwards and it goes radially inwards for the negative charges.
- From the theory of electric field lines we know that they never intersect each other, either they get merged when the sources are unlike or they repel when the sources are alike. In other words the electric field lines align in the same direction as that of the field.
- So, when a positive charge is released into the an electric field they follow the direction of the field lines because they too have their field lines emerging radially outwards and hence these lines align in the direction of the field.