Respuesta:
2400 mL
Explicación:
Paso 1: Información dada
- Volumen de solución: 3 L (3000 mL)
- Concentración de naranja: 20 % v/v
Paso 2: Calcular el volumen de naranja
La concentración de naranja es de 20 % v/v, es decir, cada 100 mL de solución hay 20 mL de naranja.
3000 mL Sol × 20 mL Naranja/100 mL Solución = 600 mL Naranja
Paso 3: Calcular el volumn de agua
El volumen de soluciónes igual a la suma de los volúmenes de naranja y agua.
VSolución = VNaranja + VAgua
VAgua = VSolución - VNaranja
VAgua = 3000 mL - 600 mL = 2400 mL
1) HOBr stands for hypobromous acid. On reacting with water, products formed are OBr- and H3O+. Following reaction occurs during this process.
<span> HOBr + H2O </span>⇄<span> OBr- + H3O+
2) HOBr is a weak acid and have a lower value of dissociation constant (Ka ~ </span><span>2.3 X 10^–9). Hence, </span><span> large number of undissociated HOBr molecules are left in solution, when the reaction is completed/reaches equilibrium.</span>
5) state
when the state of the chemical changes that is the most important
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3
Answer:
Fe is limiting, and it will produce .0188 mols of Fe2O3
Explanation:
after you convert both Fe and O2 to mols by using their molar mass, you see there is less Fe than O2 so that is your limiting reactant. To find the amount of Fe2O3 you devide the limiting reactant by it's coefeciant (4) then multiply it by the products coefficant (2). Let me know if you have any questions