There are 2 moles of O stones present in 88 grams of CO2. Why? Well, we can find the amount of moles present in 88 grams of CO2 by dividing the mass by the molar mass. The mass of CO2 comes out to be 88 grams. The molar mass of CO2 comes out to be 44 grams. Because 88 is the mass of CO2 and 44 is the molar mass of CO2, we can divide 88 by 44 to identify that there are 2.0 moles of O atoms present in 88 grams of CO2.
Your final answer: There are 2.0 moles of O atoms present in 88 grams of CO2. Your final answer to this question is D, or 2.0 moles. If you need to better understand, let me know and I will gladly assist you.
Na₂CrO₄ + PbCl₂ → PbCrO₄ + 2 NaCl
<u>Explanation:</u>
In a double displacement reaction, the reactants which are involved in the reaction exchanging their ions thereby produces 2 new compounds. Here sodium chromate and lead chloride are undergoing double displacement reaction, the ions exchanges their position there by forming sodium chloride and lead chromate. So the double displacement reaction is given as,
Na₂CrO₄ + PbCl₂ → PbCrO₄ + 2 NaCl
I would expect silane because all the rest have an overall dipole movement
Answer:
The hydrogen molecules combine with the oxygen molecules, 2 hydrogen molecules, and 1 oxygen molecules is the amount needed to make one water atom or molecule, whatever you want to call it.
<span>(1) CH3CHCHCH3.................</span>