1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
2 years ago
15

Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magni

tude charges of opposite sign so that a uniform downward electric field of 2.02*10^3 N/C exists in the region between them. A particle of mass 2.00*10^16kg and with a positive charge of 1.03*10^6 C leaves the center of the bottom negative plate with an initial speed of 1.02*10^5 m/s at an angle of 37.0° above the horizontal.
(a) Describe the trajectory of the particle.
a parabolaa circle a helixa straight lineYour answer is correct.
(b) Which plate does it strike?
negative platepositive plate It does not strike either plate.Your answer is correct.
(c) Where does it strike, relative to its starting point? (Enter the horizontal distance from the initial position.)
= m.
Physics
1 answer:
Ber [7]2 years ago
4 0

Answer:

a) motion is PARABOLIC, b) positive particle is accelerated towards the negative plate,  c)  x = 6.19 10⁹ m

Explanation:

This exercise looks at the motion of a positively charged particle in an electric field.

a) Since the field is vertical the acceleration in this direction is

            F = m a

the electric force is

           F = q E

we substitute

          q E = m a

           a = qE / m

the mass of the particle is m = 2.00 10-16 kg

           a = 1.6 10⁻¹⁹ 2.02 10³ / 2.00 10⁻¹⁶ kg

           a = 1,616 m / s²

           

on the x-axis there are no relationships because there are no forces.

Since the particle has velocities in both axes, its motion is PARABOLIC,

b) the positive particle is accelerated towards the negative plate,

The field is descending, for which the event is down

c) where  hit the particle on the x-axis

they indicate that the particle leaves the center of the negative plate, for which we will fix our reference system at this point.

Let's find the components of the initial velocity.

           sin θ = v_{oy} / v

           cos θ = v₀ₓ / v

           v_{oy} = v₀ sin θ

           v₀ₓ = v₀ cos θ

           v_{oy) = 1.02 10⁵ sin 37 = 0.6139 10⁵ m / s

           v₀ₓ = 1.02 10⁵ cos 37 = 0.8146 10⁵ m / s

Let's find the time it takes to hit the negative plate

            y = y₀I + v_{oy} t + ½ a and t2

in this case the positions are y = y₀ = 0 and the accelerations

a = - 1,616m/s2,

we substitute

            0 = 0 + v_{oy} t - ½ a_y t²

            v_{oy}= ½ a_y t

            t = 2v_{oy} / a_y

let's calculate

           t = 2 0.6139 10⁵ / 1.616

           t = 7.597 10⁴s

in this time the particle travels a horizontal distance

           x = v₀ₓ t

           x = 0.8145 10⁵ 7.597 10⁴

           x = 6.19 10⁹ m

the particle falls off the plate

You might be interested in
What prevents the pressure from increasing as a cloud contracts due to its gravity?
Vesnalui [34]

Thermal energy is converted to radiative energy via molecular collisions and released as photons.

4 0
2 years ago
A space shuttle takes off from FL and circles Earth several times, finally landing in CA. While the shuttle is in flight, a phot
mixer [17]

Answer:

Both the astronauts and photographer have the same displacement

Explanation:

Displacement is the minimum distance between two point. The initial point of both the astronauts and the photographer was Florida and the final point was California. So, the minimum distance for both of the astronauts and the photographer would be the distance between Florida and California would be the same.

Hence, both the astronauts and photographer will have the same displacement.

3 0
3 years ago
20.0 m [N] - 15 m [S20degreesE]
denis-greek [22]

Answer:

thank for making me give up on life

Explanation:

I thought the stuff I had was hard wth is even that

3 0
3 years ago
In classical physics, consider a 2 kg block hanging on a spring with a spring constant of 50 N/m. Ignore air resistance. The blo
RUDIKE [14]

Answer:

v = 0

Explanation:

This problem can be solved by taking into account:

- The equation for the calculation of the period in a spring-masss system

T = \sqrt{\frac{m}{k} }     ( 1 )

- The equation for the velocity of a simple harmonic motion

x = \frac{2\pi }{T}Asin(\frac{2\pi }{T}t)   ( 2 )

where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block

Hence

T = \sqrt{\frac{2 kg}{50 N/m}} = 0.2 s

and by reeplacing it in ( 2 ):

v = \frac{2\pi }{0.2s}(14cm)sin(\frac{2\pi }{0.2s}(0.9s)) = 140\pi  sin(9\pi ) = 0

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.

5 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Other questions:
  • Please help me find out this answer
    7·1 answer
  • What is the atomic number of the atom shown?<br><br>A)3B)13C)14D)27<br><br>​
    8·1 answer
  • Which of the following types of light has the most energy to give to an electron?
    10·2 answers
  • Can you check this and tell me if I anything wrong
    9·1 answer
  • A proton is located at &lt;3 x 10^-10&gt; m. What is r, the vector from the origin to the location of the proton
    5·1 answer
  • What is the prefix notation of 0.0000738?​
    12·2 answers
  • The plates on a vacuum capacitor have a radius of 3.0 mm and are separated by a distance of 1.5 mm. What is the capacitance of t
    14·1 answer
  • Jesse celebrated his birthday yesterday by eating a giant birthday cake with 17 candles. What type of energy conversion ocurred
    15·1 answer
  • Some steps in mitosis are shown below in the incorrect order:
    7·2 answers
  • When both distance and direction are indicated, it becomes a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!