Answer:
I believe that the crab would have 14 arms if the octopus had 12 arms
Explanation:
Answer:
1) Q ’= 8 Q
, 2) q ’= 16 q
, 3) r ’= ¾ r
Explanation:
For this exercise we will use Coulomb's law
F = k q Q / r²
It asks us to calculate the change of any of the parameters so that the force is always F
Original values
q, Q, r
Scenario 1
q ’= 2q
r ’= 4r
F = k q ’Q’ / r’²
we substitute
F = k 2q Q ’/ (4r)²
F = k 2q Q '/ 16r²
we substitute the value of F
k q Q / r² = k q Q '/ 8r²
Q ’= 8 Q
Scenario 2
Q ’= Q
r ’= 4r
we substitute
F = k q ’Q / 16r²
k q Q / r² = k q’ Q / 16 r²
q ’= 16 q
Scenario 3
q ’= 3/2 q
Q ’= ⅜ Q
we substitute
k q Q r² = k (3/2 q) (⅜ Q) / r’²
r’² = 9/16 r²
r ’= ¾ r
Answer: force, force
Explanation:
Newton’s third law states that there is an equal and opposite force
I took the test too
Two physical systems are in thermal equilibrium if no heat flows between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially and temporally uniform.
Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as heat but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s