Momentum
mava + mbvb = mava '+ mbvb'
(300 x 10)+(150 x 0) = (300 x 4.12)+(150 x vb')
3000=1236+150vb'
1764 = 150vb'
vb'=+11.76 m/s ≈ +11.8 m/s (positive sign, to the right)
Answer:
4.1 eV
Explanation:
Kinetic energy, K = 0.8 eV = 0.8 x 1.6 x 10^-19 J = 1.28 x 10^-19 J
wavelength, λ = 253.5 nm = 253.5 x 10^-9 m
According to the Einstein energy equation

Where, E be the energy incident, Wo is the work function and K is the kinetic energy.
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s

So, the work function, Wo = E - K
Wo = 7.85 x 10^-19 - 1.28 x 10^-19
Wo = 6.57 x 10^-19 J
Wo = 4.1 eV
Thus, the work function of the metal is 4.1 eV.
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

In a gear train with two gears, the gear ratio is defined as follows
where

is the angular velocity of the input gear while

is the angular velocity of the output gear.
This can be rewritten as a function of the number of teeth of the gears. In fact, the angular velocity of a gear is inversely proportional to the radius r of the gear:

But the radius is proportional to the number of teeth N of the gear. Therefore we can rewrite the gear ratio also as
Water that flows across the surface is called a;
Runoff
That's when rain has saturated the ground to the point it cant hold anymore and it runs over the surface.