Density = mass / volume
Density = (78g) / (23cm^3)
Density = 3.4g/cm^3
Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Explanation:
Water Content of Epidermal Cells
Temperature: Increase in the temperature causes stomata to open
1. carbon lies in the 2nd period where silicon in the third period.
2. carbon is a non metal whereas silicon is a metalloid.
3. there are only 3 isotopes of carbon and 23 isotopes of silicon
4. size of silicon atom is larger
5. silicon is heavier than carbon.