Answer:
- <u><em>Ratio of the mass carbon that combines with 1.00 g of oxygen in compound 2 to the mass of carbon that combines with 1.00 g of oxygen in compound 1 = 2</em></u>
Explanation:
First, detemine the mass of oxygen in the two samples by difference:
- mass of oxygen = mass of sample - mass of carbon
Item Compound 1 Compound 2
Sample 80.0 g 80.0 g
Carbon 21.8 g 34.3 g
Oxygen: 80.0 g - 21.8g = 58.2 g 80.0 g - 34.3 g = 45.7 g
Second, determine the ratios of the masses of carbon that combine with 1.00 g of oxygen:
- For each sample, divide the mass of carbon by the mass of oxygen determined above:
Sample Mass of carbon that combines with 1.00 g of oxygen
Compound 1 21.8 g / 58.2 g = 0.375
Compound 2 34.3 g / 45.7 g = 0.751
Third, determine the ratio of the masses of carbon between the two compounds.
- Divide the greater number by the smaller number:
- Ratio = 0.751 / 0.375 = 2.00 which in whole numbers is 2
Answer:
Metallic Bonding
Explanation:
Metallic Bonding
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.
Answer:
Al + 4AgNO3 >>Al(NO3)3+ 3Ag
Explanation:
the number of moles of No3 of the products is 3 therefore we have to balance the reactants by adding 3 before the "AgNO3" which also leades us to adding 3 mols to Ag on the products side