protons and neutrons are in the nucleus electrons surround the atom and i have no idea what positrons are i just know they arent in an atom so your answer is B and C
C) the scientist made an identification by identifying the amount of drug in her blood and realising it was high
Answer:
6626 g
Explanation:
Given that:
Density of water = 1.00 g/ml, volume of water = 42800 ml.
Since density = mass/ volume
mass of water = volume of water * density of water = 42800 ml * 1 g/ml = 42800 g
Initial temperature of water = 22°C and final temperature of water = 45°C.
specific heat capacity for water = 4.184 J/g°C
ΔT water = 45 - 22 = 23°C
For iron:
mass = m,
specific heat capacity for iron = 0.444 J/g°C
Initial temperature of iron = 1445°C and final temperature of water = 45°C.
ΔT iron = 45 - 1445 = -1400°C
Quantity of heat (Q) to raised the temperature of a body is given as:
Q = mCΔT
The quantity of heat required to raise the temperature of water is equal to the temperature loss by the iron.
Q water (gain) + Q iron (loss) = 0
Q water = - Q iron
42800 g × 4.184 J/g°C × 23°C = -m × 0.444 J/g°C × -1400°C
m = 4118729.6/621.6
m = 6626 g
Answer:
Volume of stock solution needed = 6.0299 mL
Explanation:
<u>
</u>Dilution consists of lowering the amount of solute per unit volume of solution. It is achieved by adding more diluent to the same amount of solute.
This is deduced when thinking that both the dissolution at the beginning and at the end will have the same amount of moles.
<u>Data:</u>
M1 = 6.01 M stock solution concentration
M2 = 0.3624 M diluted solution concentration
V2 =100 mL diluted solution volume
V1 = ? stock solution volume
M1 * V1 = M2 * V2

Answer:
CuCl2-Ion-dipole forces
CuSO4-Ion-dipole forces
NH3-Dipole-dipole forces
CH3OH-Dipole-dipole forces
Explanation:
Water consists of a dipole. The water molecule contains a positive end and a negative end. The positive ion attracts the negative dipole of water while the positive dipole in water interacts with the negative ion of an ionic substance. This explains the dissolution of ionic substances in water.
Copper II chloride and copper sulphate are ionic substances hence they dissolve by the mechanism described above.
Molecules consisting of dipoles dissolves by interaction of the molecule's dipoles with the dipoles in water. For example, methanol interacts with water through hydrogen bonding which is involves molecular dipoles