Answer:
D. 135°
Step-by-step explanation:
Time is 1:30
The minute hand traveled half of full circle
The minute hand position is:
The hour hand traveled 1.5 hr ÷ 12 hr= 1/8 of full circle
The hour hand position is:
the difference between the hands:
Choice D. 135° is the correct one
Answer: You would get 1 for the first section
Step-by-step explanation: you square whatever number is the x then you cube the x.
Answer:
D. 4
Step-by-step explanation:
![[(p^2) (q^{-3}) ]^{-2}.[(p)^{-3}(q)^5] ^{-2}\\\\=[(p^2) (q^{-3}) \times(p)^{-3}(q)^5 ]^{-2}\\\\=[(p^{2}) \times(p)^{-3} \times (q^{-3}) \times(q)^5 ]^{-2}\\\\=[(p^{2-3}) \times (q^{5-3}) ]^{-2}\\\\=[(p^{-1}) \times (q^{2}) ]^{-2}\\\\=(p^{-1\times (-2)}) \times (q^{2\times (-2) }) \\\\=p^{2}\times q^{-4} \\\\= \frac{p^2}{q^4}\\\\= \frac{(-2)^2}{(-1)^4}\\\\= \frac{4}{1}\\\\= 4](https://tex.z-dn.net/?f=%20%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5D%5E%7B-2%7D.%5B%28p%29%5E%7B-3%7D%28q%29%5E5%5D%20%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%20%5Ctimes%20%28q%5E%7B-3%7D%29%20%5Ctimes%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2-3%7D%29%20%5Ctimes%20%28q%5E%7B5-3%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B-1%7D%29%20%5Ctimes%20%28q%5E%7B2%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%28p%5E%7B-1%5Ctimes%20%28-2%29%7D%29%20%5Ctimes%20%28q%5E%7B2%5Ctimes%20%28-2%29%20%7D%29%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Dp%5E%7B2%7D%5Ctimes%20q%5E%7B-4%7D%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7Bp%5E2%7D%7Bq%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B%28-2%29%5E2%7D%7B%28-1%29%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B4%7D%7B1%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%204)
Answer:
\frac{13+\left(-3\right)^2+4\left(-3\right)+1-\left[-10-\left(-6\right)\right]}{\left[4+5\right]\div \left[4^2\:−\:3^2\left(4−3\right)−8\right]+12}
Step-by-step explanation:
\frac{13+\left(-3\right)^2+4\left(-3\right)+1-\left(-10-\left(-6\right)\right)}{\frac{4+5}{\left(4^2-3^2\left(4-3\right)-8\right)+12}}