What occurs is they neutralize both acid and base characteristics/features, usually producing a salt.
Hope this shells!
Answer:
<em>Answer is in the attachment</em>
The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>
Density/Earth’s gravitational pull.
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %