Answer:
F. 25.82 s
Explanation:
Given:
Δy = 90 m
v₀ = 0 m/s
a = 0.27 m/s²
Find: t
Δy = v₀ t + ½ at²
90 m = (0 m/s) t + ½ (0.27 m/s²) t²
t = 25.82 s
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:
KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T


The weather report never tells the "humidity" of the air. It tells the
"RELATIVE humidity". That's the percent of the moisture the air
COULD hold at the current temperature that it's actually holding
right now.
If the air is completely dry, then it's holding NONE of the moisture
that it COULD hold, and the relative humidity is zero percent.
Answer:
Answer:This organism may be identified by its color, the spines on its back, the antennae, and therefore the long, thin body. There are many other characteristics that might even be wont to identify this organism.
Explanation: