Remark
When you are asked a question like this, the first thing to do is search out a formula and put some limits on it.
Formula
I = E/R which comes from E = IR. To get to the derived formula, divide both sides by R
E/R = I*R/R
E/R = I
Discussion
This is an inverse relationship. That means that as one goes up the other one will go down.
So in this case you keep E constant and you manipulate R and look at your results for I
Case 1
Let us say that E = 10 volts
Let us also say the R = 10 ohms
I = E/R
I = 10/10
I = 1 ohm
Case Two
Let's raise the Resistance to 100 ohms
E = 10
R = 100
I = 10/100 = 0.1
Conclusion
As the Resistance goes up, the current goes down. Answer: A
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
It makes no sense how you typed this problem out.
To answer this question, you need to know the definition of Relative Motion:
The motion is relative when it depends on a reference point or referencial system. If you know the reference point, you can determine the velocity of an object.
If you are sitting on your chair, you are not moving relative to it (Your speed is 0 km/s); but as you know, our planet moves around the Sun (Traslation Movement) with a speed of 30.0 km/s. Therefore, you are moving 30.0 km/s relative to the sun.