Well I think B hope this helps
Answer:
there should some picture to identify right?
pls edit your question and insert the picture..
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
Answer:
No, distance is more important.
Answer:
mass-to-light ratio is the ratio of the mass of a body and the light output it has. it is represented by in terms of a single number and and tells us about the kind of stars making up the most luminous population in a galaxy. the mass-to-ratio of stars is greater than 1, for dark matter is 100 times high and very low for dust. higher mass-to-ratio mean that in a galaxy on average every solar mass emits a light less than the sun of the earth solar system does.
the large mass-to-light ratio shows that gas and dust is being analyzed.