On the change in potential energy
Answer:
d. 332 V
Explanation:
Given;
number of turns in the wire, N = 40 turns
area of the coil, A = 0.06 m²
magnitude of the magnetic field, B = 0.4 T
frequency of the wave, f = 55 Hz
The maximum emf induced in the coil is given by;
E = NBAω
Where;
ω is angular velocity = 2πf
E = NBA(2πf)
E = 40 x 0.4 x 0.06 x (2 x π x 55)
E = 332 V
Therefore, the maximum induced emf in the coil is 332 V.
The correct option is "D"
d. 332 V
Answer:
The movement of an object depends on the reference frame, so it is important to predicate it.
Explanation:
Answer:
a)
, b)
, c) 
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:

Where:
- Dielectric constant.
- Vaccum permitivity.
- Plate area.
- Distance between plates.
Hence, the capacitance of the system is:



b) The charge can be found by using the definition of capacitance:




c) The energy stored in the charged capacitor is:




80000 Joule is the change in the internal energy of the gas.
<h3>In Thermodynamics, work done by the gas during expansion at constant pressure:</h3>
ΔW = -pdV
ΔW = -pd (V₂ -V₁)
ΔW = - 1.65×10⁵ pa (0.320m³ - 0.110m³)
= - 0.35×10⁵ pa.m³
= - 35000 (N/m³)(m³)
= -35000 Nm
ΔW = -35000 Joule
Therefore, work done by the system = -35000 Joule
<h3>Change in the internal energy of the gas,</h3>
ΔV = ΔQ + ΔW
Given:
ΔQ = 1.15×10⁵ Joule
ΔW = -35000 Joule
ΔU = 1.15×10⁵ Joule - 35000 Joule
= 80000 Joule.
Therefore, the change in the internal energy of the gas= 80000 Joule.
Learn more about thermodynamics here:
brainly.com/question/14265296
#SPJ4