Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters
U can always just do the classic roller coaster going up an incline and create some sort of story from that.
Claim 2: Molecules speed up when they get energy from other molecules and slow down when they give energy to other molecules.
Energy can’t be destroyed (stated in claim 1) so claim 2 is more than likely to be correct
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
The magnitude of the source charge is 3 μC which generates 4286 N/C of the electric field. Option B is correct.
What does Gauss Law state?
It states that the electric flux across any closed surface is directly proportional to the net electric charge enclosed by the surface.

Where,
= electric force = 4286 N/C
= Coulomb constant = 
= charges = ?
= distance of separation = 2.5 m
Put the values in the formula,

Therefore, the magnitude of the source charge is 3 μC.
Learn more about Gauss's law:
brainly.com/question/1249602