It's weird but technically correct to say that a radio wave can be considered a low-frequency light wave. Radio and light are both electromagnetic waves. The only difference is that radio waves have much much much longer wavelengths, and much much much lower frequencies, than light waves have. But they're both the same physical phenomenon.
However, a radio wave CAN'T also be considered to be a sound wave. These two things are as different as two waves can be.
-- Radio is an electromagnetic wave. Sound is a mechanical wave.
-- Radio waves travel more than 800 thousand times faster than sound waves do.
-- Radio waves are transverse waves. Sound waves are longitudinal waves.
-- Radio waves can travel through empty space. Sound waves need material stuff to travel through.
-- Radio waves can be detected by radio, TV, and microwave receivers. Sound waves can't.
-- Sound waves can be detected by our ears. Radio waves can't.
-- Sound waves can be generated by talking, or by hitting a frying pan with a spoon. Radio waves can't.
-- Radio waves can be generated by an alternating current flowing through an isolated wire. Sound waves can't.
Answer:
Explanation:
I got the same thing. So, i don't know but good luck
Answer: as the public need for equal access for people with disabilities became understood, laws were enacted to mandate assistive technologies inclusion in almost all public spaces
Explanation: I just took the test but my teachers a füçkįñg čūńt so don't know if the this will help
Answer:
See Explanation
Explanation:
The relationship between angle of an incline and the acceleration of an object moving down the incline.
As the angle of an incline increases, so does the acceleration of the body moving down the incline increases, resolving the force acting on an inclined object
Parallel force = mgsin, perpendicular = mgcosΘ
With th weigh component 'mg' of the parallel force accounting for the acceleration of the body down the incline.
mgsinΘ = ma
Fnet = ma
B.) From Fnet = ma
Fnet = ma
a = Fnet / m
Where Fnet = Net force = mgsinΘ, a = acceleration