Answer:
Nacelle. The nacelle sits atop the tower and contains the gearbox, low- and high-speed shafts, generator, and brake.
Explanation:
I’ll try to get someone to help you I got you bro I’m gonna go find somebody got you
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
There is a production of 11.6 moles of CO₂
Explanation:
The reaction is this:
2C₂H₆(g) + 7O₂(g) ⟶ 4CO₂(g) + 6H₂O(g)
2 moles of ethane reacts with 7 moles of oxygen, to make 4 mol of dioxide and 6 moles of water vapor.
If the oxygen is in excess, we make the calculate with the ethane (limiting reactant)
2 moles of ethane produce 4 moles of dioxide
5.8 moles of ethane produce (5.8 .4)/2 = 11.6 moles