Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer:
The concentration of methyl isonitrile will become 15% of the initial value after 10.31 hrs.
Explanation:
As the data the rate constant is not given in this description, However from observing the complete question the rate constant is given as a rate constant of 5.11x10-5s-1 at 472k .
Now the ratio of two concentrations is given as

Here C/C_0 is the ratio of concentration which is given as 15% or 0.15.
k is the rate constant which is given as 
So time t is given as

So the concentration will become 15% of the initial value after 10.31 hrs.
The balanced chemical reaction would be:
KHC8H4O4<span> (aq) + </span>NaOH<span> (aq) → NaKC8H4O4 (aq) + H2O.
The concentration of the NaOH is equal 0.1 M. We use this and the volume given above to determine the mass of KH</span>C8H4O4. We do as follows:
0.1 mol / L NaOH (.015 L) ( 1 mol KHC8H4O4 / 1 mol NaOH) (204 g / 1 mol) = 0.306 g KHC8H4O4