1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
14

Engineer drawing: How can i draw this? Any simple way?

Engineering
1 answer:
Anastasy [175]3 years ago
6 0
Make 4 triangles left right up down and they must be connected with no gaps then make more triangles into the triangle about three times for each of them then add rectangles or lines to the drawing
You might be interested in
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
A gas flows through a one-inlet, one-exit control volume operating at steady state. Considering an adiabatic control volume with
Hunter-Best [27]

Answer:

b. equal to the specific entropy of the gas at the inlet.

Explanation:

Isentropic process is the process in which the entropy of the system remains unchanged. The word isentropic is formed from the combination of the prefix "iso" which means "equal" and the word entropy.

If a process is completely reversible, without the need to provide energy in the form of heat, then the process is isentropic.

3 0
3 years ago
The advantage of using rose bud tips is that they:
Jlenok [28]

Answer:

The advantage to using a rosebud tip is that it expands the flame temperature over a wider area vs using a #0 size tip.

Explanation:

Hope this helped Mark BRAINLIEST!!

3 0
2 years ago
The "Big Dig" was the nickname of the civil engineering project that redesigned the highway Infrastructure for the city of
zheka24 [161]
Geotechnical since it’s geologicaly based
4 0
3 years ago
You can change lanes during a turn long as there’s no traffic and you driving slowly
Vanyuwa [196]
Your allowed to switch lanes as long as the road is clear and you use signals.
5 0
2 years ago
Other questions:
  • Consider a plane composite wall that is composed of two materials of thermal conductivities kA = 0.1 W/m*K and kB = 0.04 W/m*K a
    13·1 answer
  • Which solution causes cells to shrink
    13·1 answer
  • A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp
    5·1 answer
  • Early American rockets used an RC circuit to set the time for the rocket to begin re-entry after launch (true story). Assume the
    5·1 answer
  • Write a script (Program 2) to perform t he following matrix operations. Use output commands to clearly output each problem with
    15·1 answer
  • using the two transistor analogy to explain what happens when an SCR is supplied with some gate current.​
    15·1 answer
  • If my current directory is ‘AR’ write the path for my current directory
    5·1 answer
  • An ideal gas is contained in a closed assembly with an initial pressure and temperature of
    14·1 answer
  • Technician A says that the starter solenoid switches the high current on and off. Technician B says that the solenoid on the sta
    5·1 answer
  • A common boundary-crossing problem for engineers is when their home country' values come into sharp contrast with the host count
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!