Answer:
The Young's Modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The Young's Modulus (or Elastic Modulus) is in essence the stiffness of a material. In other words, it is how easily it is bended or stretched.
Explanation:
Have a great day
Answer:
It is a non profit organization that dedicates to licensing professional engineers and surveyors
Explanation:
Answer:
insert (array[] , value , currentsize , maxsize )
{
if maxsize <=currentsize
{
return -1
}
index = currentsize-1
while (i>=0 && array[index] > value)
{
array[index+1]=array[index]
i=i-1
}
array[i+1]=value
return 0
}
Explanation:
1: Check if array is already full, if it's full then no component may be inserted.
2: if array isn't full:
- Check parts of the array ranging from last position of range towards initial range and determine position of that initial range that is smaller than the worth to be inserted.
- Right shift every component of the array once ranging from last position up to the position larger than the position at that smaller range was known.
- assign new worth to the position that is next to the known position of initial smaller component.
Answer:
The inductance of the inductor is 0.051H
Explanation:
From Ohm's law;
V = IR .................. 1
The inductor has its internal resistance referred to as the inductive reactance, X
, which is the resistance to the flow of current through the inductor.
From equation 1;
V = IX
X
=
................ 2
Given that; V = 240V, f = 50Hz,
=
, I = 15A, so that;
From equation 2,
X
= 
= 16Ω
To determine the inductance of the inductor,
X
= 2
fL
L = 
= 
= 0.05091
The inductance of the inductor is 0.051H.
Answer:
13.335 CM (1 ft, 1.335 cm)
I am 80% sure this is the answer, but i am not too keen on math so if i am wrong let me know and i will try my best to fix it!
I hope this helped! Have a good day :]