<span>When one talks about ppm in a liquid solution someone means mg/L so we would not be using the density. This usually means ug/g or mg/kg
0.115 g Na^+ * 10^6 ug/1 g = 115000 ug/g
4.55 L * 1000 mL/1L = 4550 mL
Concentration of Na^+ in ppm:
115000 ug/g /4550 mL = 25.27 pm of sodium ion</span>
Answer:
0.01932 L
Explanation:
First we <u>convert 105 mM to M</u>:
Next we <u>convert 552 mL to L</u>:
Then we use the following equation:
Where:
We<u> input the given data</u>:
- 3 M * V₁ = 0.105 M * 0.552 L
And <u>solve for V₁</u>:
Answer:
I would use calorimetric to determine the specific heat and I would measure the mass of a sample
Explanation:
I would use calorimetry to determine the specific heat.
I would measure the mass of a sample of the substance.
I would heat the substance to a known temperature.
I would place the heated substance into a coffee-cup calorimeter containing a known mass of water with a known initial temperature.
I would wait for the temperature to equilibrate, then calculate temperature change.
I would use the temperature change of water to determine the amount of energy absorbed.
I would use the amount of energy lost by substance, mass, and temperature change to calculate specific heat.
Filtration can be used to separate an insoluble solid from a liquid, or a precipitate from the reaction mixture in which it formed. The solid which collects in the filter paper<span> is called the residue. The clear liquid which passes through the </span>filter paper<span> is called the filtrate.</span>