Answer:
Total mechanical energy = 225 J
Explanation:
Given:
Mass of duck (m) = 2 kg
Speed of duck (v)= 5 m/s
Height of duck from ground (h) = 10 m
Gravitation acceleration (g) = 10 m/s²
Find:
Total mechanical energy
Computation:
Total mechanical energy = Kinetic energy + Potential energy
Total mechanical energy = (1/2)mv² + mgh
Total mechanical energy = (1/2)(2)(5)² + (2)(10)(10)
Total mechanical energy = 25 + 200
Total mechanical energy = 225 J
Answer: They create antibodies.
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
Answer:They come in different kinds, called elements, but each atom shares certain characteristics in common. All atoms have a dense central core called the atomic nucleus. Forming the nucleus are two kinds of particles: protons, which have a positive electrical charge, and neutrons, which have no charge
Explanation:
y = 0m
y0 = 166m
v0y = 0 m/s
g = 9.8 m/s^2
t = ?
Solve for t:
y = y0 + v0y*t - (0.5)gt^2
0 = 166 - (0.5)(9.8)t^2
t = 5.82 s
Now, using time, we can solve for the range using the equation:
x = vx(t)
x = (40)(5.82)
x = 232.8 m
The impact horizontal component of velocity will be 40 m/s as velocity in terms of x is always constant. To find the impact vertical component of velocity, we use the equation:
v = v0y - gt
v = 0 - (9.8)(5.82)
v = -57.04 m/s