I think the Answer is A (An elephant walking 1.5 m/s along the ground), and B (A jet flying across the sky 4,000 m above the ground.
Answer: The answer is B. Add more solute (took test)
Explanation:
Answer:
W = 0.135 N
Explanation:
Given:
- y (x, t) = 8.50*cos(172*x -2730*t)
- Weight of string m*g = 0.0126 N
- Attached weight = W
Find:
The attached weight W given that Tension and W are equal.
Solution:
The general form of standing mechanical waves is given by:
y (x, t) = A*cos(k*x -w*t)
Where k = stiffness and w = angular frequency
Hence,
k = 172 and w = 2730
- Calculate wave speed V:
V = w / k = 2730 / 172 = 13.78 m/s
- Tension in the string T:
T = Y*V^2
where Y: is the mass per unit length of the string.
- The tension T and weight attached W are equal:
T = W = Y*V^2 = (w/L*g)*V^2
W = (0.0126 / 1.8*9.81)*(13.78)^2
W = 0.135 N
Answer:
1. The final velocity of the truck is 15 m/s
2. The distance travelled by the truck is 37.5 m
Explanation:
1. Determination of the final velocity
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Final velocity (v) =?
The final velocity of the truck can be obtained as follow:
v = u + at
v = 0 + (3 × 5)
v = 0 + 15
v = 15 m/s
Therefore, the final velocity of the truck is 15 m/s
2. Determination of the distance travelled
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Distance (s) =?
The distance travelled by the truck can be obtained as follow:
s = ut + ½at²
s = (0 × 5) + (½ × 3 × 5²)
s = 0 + (½ × 3 × 25)
s = 0 + 37.5
s = 37.5 m
Therefore, the distance travelled by the truck is 37.5 m