Answer:
The metal atoms in the wire can't move, but their outer electrons can. The force pushes those electrons and they move to further parts of the wire, trying to reach the other end. As the electrons move away, new electrons flow into the wire through the battery to take their place.
Explanation:
The temperature scale which starts at absolute zero is the Kelvin scale. The correct option in respect to the given question is the last option. William Thompson was the British scientist and inventor that invented the Kelvin scale. William Thompson was also popularly known as Lord Kelvin.His discovery of the Kelvin scale is considered one among the three best scales in use for measuring temperatures.Each measuring unit of this scale is never called a degree but a Kelvin. This specialized scale gives the option of measuring temperature in both centigrade and Fahrenheit.
The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).
- Work function is a material property defined as the minimum amount of energy required to infinitely remove electrons from the surface of a particular solid.
- The potential difference required to support all emitted electrons is called the stopping potential which is given by
.....(1) - where
is the stopping potential and e is the charge of the electron given by
.
It is given that work function (Ф) of monochromatic light is 2.50 eV.
Einstein photoelectric equation is given by:
....(2)
where K.E(max) is the maximum kinetic energy.
Substituting (1) into (2) , we get

As we know that
....(3)
where Speed of light,
and Planck's constant , 
From equation (3) , we get

Learn about more einstein photoelectric equation here:
brainly.com/question/11683155
#SPJ4
Answer:
Option A
Explanation:
This can be explained based on the conservation of energy.
The total mechanical energy of the system remain constant in the absence of any external force. Also, the total mechanical energy of the system is the sum of the potential energy and the kinetic energy associated with the system.
In case of two stones thrown from a cliff one vertically downwards the other vertically upwards, the overall gravitational potential energy remain same for the two stones as the displacement of the stones is same.
Therefore the kinetic energy and hence the speed of the two stones should also be same in order for the mechanical energy to remain conserved.