Answer : The enthalpy change for the reaction is 1043 kJ/mol.
Explanation :
The given chemical reaction is:

As we know that:
The enthalpy change of reaction = E(bonds broken) - E(bonds formed)
![\Delta H=[(2\times B.E_{C\equiv O})+(1\times B.E_{O\equiv O})]-[2\times B.E_{C=O}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%282%5Ctimes%20B.E_%7BC%5Cequiv%20O%7D%29%2B%281%5Ctimes%20B.E_%7BO%5Cequiv%20O%7D%29%5D-%5B2%5Ctimes%20B.E_%7BC%3DO%7D%5D)
Given:
= 1074 kJ/mol
= 499 kJ/mol
= 802 kJ/mol
Now put all the given values in the above expression, we get:
![\Delta H=[(2\times 1074kJ/mol)+(1\times 499kJ/mol)]-[2\times 802kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%282%5Ctimes%201074kJ%2Fmol%29%2B%281%5Ctimes%20499kJ%2Fmol%29%5D-%5B2%5Ctimes%20802kJ%2Fmol%5D)

Therefore, the enthalpy change for the reaction is 1043 kJ/mol.
The smallest functional and structural unit of an organism, usually microscopic and consisting of cytoplasm and a nucleus in a membrane.
Hydrocarbon hydrogen thats all ik sorry
Answer:
C₃H₉N
Explanation:
The empirical formula of a compound is the fundamental and basic possible formula that shows the mole ratio of the atoms of each element in a molecule of the compound.
mole ratio of carbon = 60.94/12 = 5.078
mole ratio of hydrogen = 15.36/1 = 15.36
mole ratio of nitrogen = 23.70/14 = 1.693
Now; we will divide by the smallest value
So; carbon = 5.078/1.693 = 2.99 ≅ 3.0
hydrogen = 15.36/1.693 = 9.07 ≅ 9.0
nitrogen = 1.693/1.693 = 1 ≅ 1
Thus, the empirical formula is = C₃H₉N