Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!
1 property
2 procedure
Results
Hi yes bestie just make sure you eat enough so that you can actually build the mussel
Remember the formula as per the second Law of Newton: F = m*a
And also remember that the weight is the force with which the mass is attracted by the planet (or satellite in the case of the moon).
With that information you can answer the questions:
a) Weight = F = m*a
m = 175 slugs = 175 lbm
i) Earth
a = 32.17 ft/s^2
Weight on Earth = 175 lbm * 32.17 ft / s^2 = 5,629.75 poundal
ii) Moon
a = [1/6] 32.17 ft/s^2
Weight on the Moon = [1/6]*5,629.75 poundal = 938.29 poundal
b) Force = 355 poundal
m = 25.0 slug
a in m/s^2 = ?
First calculate the force in ft/s^2
F = m*a => a = F/m = 355 poundal / 25.0 slug = 14.2 ft/s^2
Conversion:
14.2 ft / s^2 * [ 0.3048 m/ft] = 4.32816 m/s^2
Answer: 4.33 m/s^2
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.