The picture is not loading as it requires a sign in.
However, I can tell you how to solve this.
Answer:
<span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Explanation:
The relation between frequency and wavelength can be described by the help of velocity as follows:
velocity = frequency * wavelength
This means that:
frequency = velocity / wavelength
Noting this equation, we will find that:
The frequency and the wavelength are inversely proportional to each other. This means that as the frequency increases, the wavelength decreases and vice versa.
Now, examining the choices given, we can find that the only statement showing the inverse relation between frequency and wavelength is:
</span><span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Hope this helps :)
</span>
Answer: 0.176 atm
Explanation: Solution attached:
Use Boyle's Law to find the new pressure of the gas.
P1V1 = P2V2
Derive for P2
P2 = P1V1 / V2
= 5.5 atm ( 4.8 L ) / 150 L
= 0.176 atm
Answer:
3. 116.5 V
4. 119.6 V
Explanation:
3. Determination of the voltage.
Resistance (R) = 25 Ω
Current (I) = 4.66 A
Voltage (V) =?
V = IR
V = 4.66 × 25
V = 116.5 V
Thus, the voltage is 116.5 V
4. Determination of the voltage.
Current (I) = 9.80 A
Resistance (R) = 12.2 Ω
Voltage (V) =?
V = IR
V = 9.80 × 12.2
V = 119.6 V
Thus, the voltage is 119.6 V