For this case we have, by definition, that:
Resistance is a component that is responsible for limiting the amount of current that can pass through a circuit, converting excess heat.
Consume energy.
Option A represents a swicth, option B represents a luminaire and option D represents a voltage source.
So, the correct option is C,
Answer:
Option C
<u>Answer:</u>
For 1: The correct option is Option C.
For 3: The final velocity of the opponent is 1m/s
<u>Explanation: </u>
During collision, the energy and momentum remains conserved. The equation for the conservation of momentum follows:
...(1)
where,
are the mass, initial velocity and final velocity of first object
are the mass, initial velocity and final velocity of second object
<u>For 1:</u>
We are Given:

Putting values in equation 1, we get:

Hence, the correct answer is Option C.
Impulse is defined as the product of force applied on an object and time taken by the object.
Mathematically,

where,
F = force applied on the object
t = time taken
J = impulse on that object
Impulse depends only on the force and time taken by the object and not dependent on the surface which is stopping the object.
Hence, the impulse remains the same.
Let the speed in right direction be positive and left direction be negative.
We are Given:

Putting values in equation 1, we get:

Hence, the final velocity of the opponent is 1m/s and has moved backwards to its direction of the initial velocity.
Answer:

Explanation:
As per the equation of voltage on capacitor we know that

now we know that voltage reached to its 80% of maximum value in 4 second time
so we will have





as we know that



Answer:
The correct option is;
Force of Friction
Explanation:
As coach Hogue rode his motorcycle round in circle on the wet pavement, the motorcycle and the coach system tends to move in a straight path but due to intervention by the coach they maintain the circular path
The motion equation is
v = ωr and we have the centripetal acceleration given by
α = ω²r and therefore centripetal force is then
m×α = m × ω²r = m × v²/r
The force required to keep the coach and the motorcycle system in their circular path can be obtained by the impressed force of friction acting towards the center of the circular motion.
Answer:
a

b

Explanation:
From the question we are told that
The dimensions of the rectangular coil is 5.40 cm ✕ 8.50 cm = 0.054 m X 0.085 m
The number of turns is 
The current it is carrying is 
The magnetic field is 
Generally the magnitude of the magnetic dipole moment is mathematically represented as

Here A is the area which is mathematically represented as

=> 
So

=> 
Generally the magnitude of the torque acting on the loop is mathematically represented as

=>
=>