Answer:
Choice C is not equivalent to 2.50 miles.
Explanation:
The given data is now converted into feet, inches, kilometers, yards and centimeters:
mi - ft


(Choice A)
mi - in


(Choice B)
mi - km

(Different from Choice C)
mi - yd


(Choice D)
mi - cm


(Choice E)
Choice C is not equivalent to 2.50 miles.
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
Answer:
1.57772 m
Explanation:
M = Mass of actor = 84.5 kg
m = Mass of costar = 55 kg
v = Velocity of costar
V = Velocity of actor
= Intial height of actor = 4.3 m
g = Acceleration due to gravity = 9.81 m/s²
As the energy of the system is conserved

As the linear momentum is conserved

Applying conservation of energy again

The maximum height they reach is 1.57772 m
Answer:
c. hot material must be rising from the Sun's hotter interior
Explanation:
Granulation is the grainy appearance of the solar photosphere produced by the top of the convection cells in the sun.
The grainy appearance are produced by granules on the photosphere of the sun and granules are caused by convection currents of plasma within the sun's convection zone.
The interior of these granules are brighter (and thus hotter) than the exterior of the granules which are darker.
<u>So, the granulation pattern that astronomers have observed on the surface of the Sun tells us that hot material must be rising from the Sun's hotter interior.</u>
<span>1) Explain how the particles that make up solid matter can be in perpetual motion if they do not change position. Answer: they do not mov, just vibrate a bit more and move further apart. And as a result solid expand a bit.
</span><span>2) How the Kinetic Theory of Matter defines heat. Answer: Heat is a form of energy that particles convert into kinetic energy. Adding a heat energy increases the kinetic energy of particles. This means that as a substance is heated - the particles vibrate faster and move further apart. </span>