Answer:
Work, in physics, measure of energy transfer that occurs when an object is moved over a distance by an external force at least part of which is applied in the direction of the displacement
Explanation:
Answer:
c
Explanation:
It's c the last one u see
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
4. hyperdermis is not a layer of skin
Answer:
7.7 km 26°
Explanation:
The total x component is:
x = 2.5 cos(35°) + 5.2 cos(22°) = 6.87
The total y component is:
y = 2.5 sin(35°) + 5.2 sin(22°) = 3.38
The magnitude is:
d = √(x² + y²)
d = 7.7 km
The direction is:
θ = atan(y/x)
θ = 26°