By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer:
Explanation:
The force of attraction between 2 masses.
Answer is c, they are equal:
Explanation:
Answer:
Total work done in expansion will be 
Explanation:
We have given pressure P = 2.10 atm
We know that 1 atm 
So 2.10 atm 
Volume is increases from 3370 liter to 5.40 liter
So initial volume 
And final volume 
So change in volume 
For isobaric process work done is equal to 
So total work done in expansion will be 