Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u>
of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u>
of its orbit.
However, if
is measured in <u>years</u>, and
is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing
and isolating
from (2):
(3)
(4)
Finally:
(5)
The FREQUENCY of light remains unchanged once it leaves the source.
It is an example of reflection of wave. C.
Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.
Either A or D. If I were answering I'd go with my git answer and say A