Answer:
False, since boiling is a physical change of state. Although it is at 100°C, it is not a chemical property.
Explanation:
Hope this helped!
<h2>
1.25 g of
would be produced from the complete reaction of 25 mL of 0.833 mol/L
with excess
</h2>
Explanation:
To calculate the number of moles for given molarity, we use the equation:


According to stoichiometry:
1 mole of
will give = 1 mole of 
0.0208 moles of
will give =
of 
Mass of 
Thus 1.25 g of
would be produced from the complete reaction of 25 mL of 0.833 mol/L
with excess
Learn more about molarity
https://brainly.in/question/13034158
#learnwithbrainly
<em><u>the</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>aluminium</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em>
Answer:
Option B is correct. A nuclear alpha decay
Explanation:
Step 1
This equation is a nuclear reaction. So it can be an alpha decay or a beta decay
An α-particle is a helium nucleus. It contains 2 protons and 2 neutrons, for a mass number of 4.
During α-decay, an atomic nucleus emits an alpha particle. It transforms (or decays) into an atom with an atomic number 2 less and a mass number 4 less.
Thus, radium-226 decays through α-particle emission to form radon-222 according to the equation that is showed.
A Beta decay occurs when, in a nucleus with too many protons or too many neutrons, one of the protons or neutrons is transformed into the other.
Option B is correct. A nuclear alpha decay
Three groups
gases, metals, metalliods/nonmetals