Answer: Sugar
Explanation: Because after photosynthesis (Carbon dioxide, water, and sunlight) react, they make two products. Glucose (A sugar) and Oxygen.
Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg
Explanation:
To solve this problem, follow these steps;
- Obtain a balanced equation of the reaction and familiarize with the reactants and products.
- Find the number of moles of the reacting species since they are the known matter in terms of quantity.
- From the number of moles, determine the limiting reactant.
- The limiting reactant is the one given in short supply.
- Such reactant determines the extent of the reaction.
- Compare the moles of this specie to that of the products using the balanced equation.
- Obtain the mole of the desired product and find the mass or desired quantity.
- simply work from the known specie to the unknown
learn more:
Number of moles brainly.com/question/13064292
#learnwithBrainly
Answer:

Explanation:
Group 4A contains a total of 4 electrons for each atom in their valence shell. Filling the orbital diagram, let's say, for carbon, notice that when we start with period 2, we have two elements in the s-block, that is, lithium and beryllium. They correspond to the two s electrons that belong to the valence shell of carbon.
Moving on, we have boron and carbon, the remaining 2 electrons. Now, starting with boron, we're in the p-block.
That said, looking at the second period, the electron configuration for the valence shell of a group 4A element would be:
