The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
0.0031792338 rad/s
Explanation:
= Angle of elevation
y = Height of balloon
Using trigonometry

Differentiating with respect to t we get

Now, with the base at 200 ft and height at 2500 ft
The hypotenuse is

Now y = 2500 ft


The angle is changing at 0.0031792338 rad/s
I believe the answer is D, Heat exhaustion involves a lack of sweating, while heat stroke involves extreme sweating. Also just to add the on if heat exhaustion is left untreated then it could turn into a heat stroke.