Answer: magnitude of applied force is FA = mg + F
Where F is the resultant force downward that the rope moves with
Explanation:
Force downwards F is,
F = FA - T
T is the upwards tension force on the rope
FA is the actual applied force in pulling the rope down.
Therefore, T = FA - F .....equ. (1)
For the box to move up with force ma ( it's mass times its acceleration upwards) upwards tension on the roap must exceed its own weight mg ( it's mass times acceleration due to gravity 9.8m/s^2)
Therefore, ma = T - mg
T = ma + mg ..... equ. (2)
Equating equ. 1 and 2
T = FA - F = ma + mg
Therefore FA = ma + mg + F
But at constant velocity a = 0
Magnitude of applied force becomes
FA = mg + F
See image below
Answer: Your answer is<u> 1.36.</u>
Hope this helps!
Answer: Around 364 to 480
Answer:
W = 0
Explanation:
We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.
The work done by an object is given by :
F = ma
So,
m is mass
a is acceleration
d is displacement
The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.
Answer = 330 m/s
The wave equation is as follows:
Wave speed = wavelength x frequency
The known values are:
Wavelength = 3m
Frequency = 110 Hz
Substitute the known values into the wave equation to find the wave speed.
Wave speed = 3 x 110
Wave speed = 330 m/s