Explanation:
The standard entropy change of a reaction has a positive value. This reaction results in an increase in entropy.
Positive entropy means the system has increased its degree of disorderness.
I think this is the answer try it
172.3995<span>
</span>
Answer:
Qm = -55.8Kj/mole
Explanation:
NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l)
Qm = (mc∆T)water /moles acid
Given => 100ml(0.300M) NaOH(aq) + 100ml(0.300M)HNO₃(aq)
=> 0.03mole NaOH(aq) + 0.03mole HNO₃(aq)
=> 0.03mole NaNO₃(aq) + 0.03mole H₂O(l)
ΔH⁰rxn = [(200ml)(1.00cal/g∙°C)(37 – 35)°C]water / 0.03mole HNO₃
= 13,333 cal/mole x 4.184J/cal = 55,787J/mol = 55.8Kj/mole (exothermic)*
Heat of reactions comes from formation of H-Oxy bonds on formation of water of reaction and heats the 200ml of solvent water from 35⁰C to 37⁰C.
You need to first write a chemical equation and balance it
C₄H₁₀ + O₂ → CO₂ + H₂O
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
1.0 moles X moles
1.0 mol C₄H₁₀ (

) = 4 moles of CO₂
Answer:
The total pressure is 0,804 atm
Explanation:
We use Dalton's law according to which the sum of the partial pressures is equal to the total pressure of a gas mixture. We convert the pressure in Pascals to atmosphere (it can also be done in reverse):
101300Pa ----1 atm
4500Pa----x= (4500Pa x 1atm)/101300Pa= 0,044 atm
P total= p1 + p2= 0,76 atm + 0,044 atm=0,804 atm