Answer:
is there an equasion it gives you?
Explanation:
need a little more info.
Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;

the shortest de Broglie wavelength for the electrons is given by;

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
The answer to this question is b
Answer: 0.56 m/s
Explanation:
Hi, to answer this question we have to apply the formula of the conservation of momentum.
m1 v1 = m2 v2 (because the system is stationary at the beginning)
Where:
m1 = mass of the astronaut
v1= velocity of the astronaut
m2= mass of the satellite
v2= velocity of the satellite
Replacing with the values given and solving:
86 kg (2.35m/s) = 360 kg v2
202.1 kgm/s=360kg v2
202.1kgm/s /360kg =v2
v2 = 0.56 m/s
Feel free to ask for more if needed or if you did not understand something.