Illluminance is the measurement of photometric power. That means, illuminance is the rate of photometric flux that is received by a surface per area. It is usually expressed as a unit of W/m^2.
Thus, from the choices, the answer we're looking for is illuminance<span>.</span>
Answer:
a) 23.2 e V
b) energy of the original photon is 36.8 eV
Explanation:
given,
energy at ground level = -13.6 e V
energy at first exited state = - 3.4 e V
A photon of energy ionized from ground state and electron of energy K is released.
h ν₁ - 13.6 = K
K combine with photon in first exited state giving out photon of energy
= 26.6 e V
h c = 6.626 × 10⁻³⁴ × 3 × 10⁸ = 12400 e V A°
K + ( 3.4 ) = 26.6 e V
a) energy of free electron
K = 26.6 - 3.4 = 23.2 e V
b) energy of the original photon
h ν₁ - 13.6 = K
h ν₁ = 23.2 + 13.6
= 36.8 e V
energy of the original photon is 36.8 eV
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
some ball when you bounce it it comes back up but according to gravity the energy goes away
Centripetal force = (mv^2)/r
so r = (mv^2)/ force = 246500 / 1100 = 224 m