Try this solution:
for the circle A: circumference=6π, area=9π
for the circle B: circumference=12π, area=36π
PS. formula for circumference is 'L=2πr', for area is 'S=πr²'.
Answer:
105 cm²
Step-by-step explanation:
The figure is composed of a rectangle and a triangle
area of rectangle = 15 × 6 = 90 cm²
area of triangle =
bh ( b is the base and h the height )
Here b = 15 - 9 = 6 and h = 11 - 6 = 5 , thus
area of triangle =
× 6 × 5 = 3 × 5 = 15 cm²
Total area = 90 + 15 = 105 cm²
Hey You! Here's How To Solve This Question:
STEP 1:
60 × 2.5 = 150
STEP 2:
54 × 2.5 = 135
STEP 3:
150 - 135 = 15
So, Darnell read 15 more pages than Fran.
I Really Hope My Answer Helped You!
Step-by-step explanation:
- (a+2b+30)-(40+36-5a)
- a+2b+30-40-36+5a
- 6a+2b-46
hope it helps.
The correct answer is: [B]: "4 " .
______________________________________
Explanation:
______________________________________
Refer to the table (provided within the actual question).
Note that the "inputs" ; or "x-values" ; are all listed in "chronological order" ; and are all "one (1) unit apart. and range from: "x = -3" to "x = 3" .
When "x = 0" ; the "output" ; or "f(x)" is "1/4" .
When "x = 1" ; the "output" ; or "f(x)" is: "1" .
_________________________________________________
So; the ratio of these two "outputs" is: "¼ : 1" ; or, write as:
" (¼) / 1 " ; and note that: " (¼) / 1 = (¼) ÷ 1 = ¼.
However; note that: "1/4" ; or "1:4" is NOT among the [answer choices given].
However, the ratio of the 2 (two) corresponding "outputs"; chronologically,
going from when "x = 1" ; to "x = 0" ; is: "1 : ¼" ; or; write as: "1 / (¼)" ;
And note that: "1 / (¼)" = " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" .
This corresponds to: Answer choice: [B]: "4<span>" .
</span>_________________________________________________
Let us further confirm that this answer is correct:
_________________________________________________
When x = 3; the "output" is: "16" .
When x = 2; the "output" is: "4" .
The ratio: "16/4 = ? 4 ? " ; → Yes!
_________________________________________________
When x = 2; the "output" is: "4" .
When x = 1; the "output" is: "1" .
The ratio: "4/1 = ? 4 ? " ; → Yes!
_________________________________________________
When x = 1; the "output" is: "1" .
When x = 0; the "output" is: "(¼)" .
The ratio: "1 / (¼) = ? 4 ? " ;
→ "1 / (¼)" = " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" . YES!
________________________________________________
When x = 0; the "output" is: "(¼)" .
When x = -1; the "output" is: "(¹/₁₆)" .
The ratio: "(¼) / (¹/₁₆) = ? 4 " ? ;
→ "(¼) / (¹/₁₆) = "(¼) ÷ (¹/₁₆) " = "(¼) * (¹⁶/₁) = (1*16) / (4*1) = 16/4 = "4" . Yes!
________________________________________________________
When x = -1; the "output" is: "(¹/₁₆)" .
When x = -2; the "output" is: "(¹/₆₄)" .
The ratio: "(¹/₁₆) / (¹/₆₄) = ? 4 " ? ;
→ "(¹/₁₆) / (¹/₆₄) = "(¹/₁₆) ÷ (¹/₆₄)" = "(¹/₁₆) * (⁶⁴/₁)" = (1*64) / (16*1) = 64/16 = "4" . Yes!
__________________________________________________________
When x = -2; the "output" is: "(¹/₆₄)" .
When x = -3; the "output" is: "(¹/₂₅₆)" ,
The ratio: "(¹/₆₄)/(¹/₂₅₆) = ? 4 " ? ;
→ "(¹/₆₄) / (¹/₂₅₆)" ;
= " (¹/₆₄) ÷ (¹/₂₅₆)" = " (¹/₆₄) * (²⁵⁶/₁) " = (1*256) / (64*1) = 256/164 = "4 " . Yes!
__________________________________________________________
→ So; as calculated; the ratio is: "4" ; which is:
__________________________________________________________
→ Answer choice: [B]: "4" .
__________________________________________________________