Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
Answer: T is greater
Explanation:
Since the elevator is moving against gravity more work will be done on the rope
T= m(g+a)
So it could follow the correct mass for the atom
Here's a quick way to find out. Pick up your glasses, bifocals work best, and find the focal length with a flashlight against a book. If I remember right, the object should be magnified and upside down. So, A.
Answer:
if one bulb burns out the other bulbs will also turn off because they are connected to each other.