Answer:
d
Explanation:
it's called the hydrocarbon
Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams
Answer: Carbon dioxide made of carbon and oxygen.
This is because compounds are the combination of two atoms from different elements (carbon and oxygen). Hope this helps :)
Answer:
Static charge is caused by the build up of electrons on the atoms of an object.
Explanation:
You can experience this yourself with a balloon! Rub it against your head in order to disassociate electrons from it, causing it to be charged - you can now put it on a wall and notice how it 'sticks' to it. You can also cause this effect by jumping on a trampoline, causing static charge to be built up - which is sometimes why you feel a little 'zap' when you touch the sides of it.
Answer: 0.8g/cm^3
Explanation:
In seeing your problem, I see an issue with your units for centimeter. The volume is in the third dimension, so we use cm^3 every single time for the volume. That way, we can arrive to the correct density (in g/cm^3)
Density = mass/volume and so
Density = 8g/10cm^3
= 0.8g/cm^3