Answer:
All flowering is regulated by the integration of environmental cues into an internal sequence of processes. These processes regulate the ability of plant organs to produce and respond to an array of signals. The numerous regulatory switches permit precise control over the time of flowering.
Explanation:
Answer:
C. disposition and condensation
Explanation:
The formula is:
frequency * h (Planck's constant) = Energy
So, to find frequency you need just divide energy by the constant:
frequency = (8 * 10^-15 J) / (6.63 * 10^-34 J*s) = 1.2 * 10^19 1/s or 1.2 * 10^19 Hz
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
Answer:
Helium
Explanation:
The first ionization energy varies in a predictable way across the periodic table.