The best description of Ernest Rutherford's experiment is letter C. The positively charged particles were fired through a gold foil. Most of these particles went right through, while others bounced back. This experiment led to the discovery of the nucleus.
Answer:
The thermodynamic parameter which is of significance in this case is the 'Reduction Potential' for molecular bromine which is ~ +1.1 v vs N.H.E. In other words, it is a strong oxidizing agent. The bromine will oxidize sulfur compounds in which the valence of sulfur is lower than six to sulfate.
There are many possible reactions. Here is one possible example:
Na2 S2O3 + 4Br2 + 5 H2O = 2NaHSO4 + 8 HBr
Answer:
Explanation is in the answer
Explanation:
The pH of the buffer solution does not change appreciably because the strong acid (free H⁺) reacts with conjugate base of buffer producing more weak acid. pH formula of buffers is (Henderson-Hasselbalch formula):
pH = pKa + log ( [A⁻] / [HA] )
The addition of strong acid decreases [A⁻] increasing [HA]. pH change just in the log of the ratio of [A⁻] with [HA], that is a real little effect over pH of the buffer solution.
There are 2 molecules of Carbon dioxide(CO2)
<h3>Further explanation</h3>
Given
Molecules of CO2
Required
The number of molecules
Solution
The coefficient of a molecule shows the number of that molecule, while the subscript after the name of the atom indicates the number of that atom in the molecule
Because there is a coefficient of 2 in front of the CO2 molecule, then the number of CO2 molecules is 2
I believe.. The answer you are looking for is A