Answer:
T² ∝ R³
Explanation:
Given data,
The period of revolution of the planet around the sun, T
The mean distance of the planet from the sun, R
According to the III law of Kepler, " Law of Periods' states that the square of the orbital period to go around the sun once is directly proportional to the cube of the mean distance between the sun and the planet.
T² ∝ R³

From the above equation it is clear that T² varies directly as the R³.
Answer:
A. A line can be drawn from the planet to the sun that sweeps out equal areas in equal times
Explanation:
This is exactly what Kepler's second law of planetary motion states:
"the segment joining the sun with the center of each planet sweeps out equal areas in equal time"
This law basically tells how the speed of a planet orbiting the sun changes during its revolution. In fact, we have that:
- when a planet is closer to the Sun, it will orbit faster
- when a planet is farther from the Sun, it will orbit slower
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com
Answer:
different value to l if n=5 are 0,1,2,3,4