The amount of heat needed to raise the temperature of a substance by

is given by

where
m is the mass of the substance
Cs is its specific heat capacity

is the increase in temperature
For oxygen, the specific heat capacity is approximately

The variation of temperature for the sample in our problem is

while the mass is m=150 g, so the amount of heat needed is
The officer is describing the motorcycle's acceleration
That is, he's describing how the motorcycle's velocity changes when compared to the time. That's the formula for calculating the average acceleration of any body.
Answer:
Tension of 132N
Explanation:
We need to apply Summatory of Force to find the tension in the hand.
We define te tensión in the hand as
and the Tension in fence post as
, then


We apply summatory of moments then

Where the Force 2 is 1.25m from the center of summatory,
We can note that,

We have two equation and two incognites, then replacing (1) in (2)




Answer:
The answer to this question is given below in this explanation section.
Explanation:
" law of conservation of energy"
The law of conservation of energy states that energy can neither be created nor destroyed only converted from one form of energy into another.This mean that a system always has a same account of a energy,unless it is added from the outside.This is particularly confusing in the case of non conversation forces,where energy is converted from ,mechanical energy into thermal energy.but the overall energy does remain the same.The only way to use energy is to transform energy from one form to another.
The amount of energy in any system than it is determined by the following equation.
Ut=Ui +W+Q
- Ut is the total internal energy of a system.
- Ui is the initial internal energy of a system.
- W is the work done by or on the system.
- Q is the heat added to or removed by the system.
It is also possible to determined the change in internal energy of the system using the equation.
ΔU=W+Q
The mechanical energy of a system increases provided their is no loss of energy due to friction.The energy would transform to kinetic energy when the speed is increasing.Te mechanical energy of a system remain constant provided their is no loss of energy due to friction.
The law of conversation of energy which say that in a closed system total energy is conserved that is it constant.
KE1 + PE1=KE2+PE2
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m