Answer:
Kc = 168.0749
Explanation:
initial mol: 0.822 0 0
equil. mol: 2(0.822 - x) x x
∴ [ HI ]eq = 0.055 mol/L = 2(0.822 - x) / (1.11 L )
⇒ 1.644 - 2x = 0.055 * 1.11
⇒ 1.644 = 2x + 0.06105
⇒ 2x = 1.583
⇒ x = 0.7915 mol equilibrium
⇒ [ H2 ] eq = 0.7915mol / 1.11L = 0.7130 M = [ I2 ] eq
⇒ Kc = ([ H2 ] * [ I2 ]) / [ HI ]²
⇒ Kc = ( 0.7130² ) / ( 0.055² )
⇒ Kc = 168.0749
A solid to a liquid, the boiling of water, solid the water molecules vibrate condensed but as a liquid they are still isolated in a controlled area and also reflect off one another more, liquid to a gas they do not and move freely until condensation occurs
<u>Answer:</u> The coefficient of carbon in the chemical reaction is 1.
<u>Explanation:</u>
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
The chemical equation for the reaction of tin (IV) oxide and carbon follows:

By Stoichiometry of the reaction:
1 mole of tin (IV) oxide reacts with carbon to produce 1 mole of elemental tin and carbon dioxide.
Hence, the coefficient of carbon in the chemical reaction is 1.