1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
6

Help plz:)))I’ll mark u Brainliest

Mathematics
1 answer:
frez [133]3 years ago
3 0
It’s 15/30=x/34
you divide 15/30 gives you 1/2 then you multiply by 34 gives you 17 thats your answer
x= 17
You might be interested in
Integrate the following problem:
vazorg [7]

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

7 0
3 years ago
Read 2 more answers
Find the equation of the straight line through (3,4) and (5,6).
Viktor [21]

Answer:

y= x+1

Step-by-step explanation:

The equation of a line is usually written in the form of y=mx+c, where m is the gradient and c is the y-intercept.

Gradient of line = \frac{y1 - y2}{x1 - x2}

Using the above formula,

Gradient

=  \frac{6 - 4}{5 - 3}  \\  =  \frac{2}{2}   \\ = 1

Thus m=1. Substitute m=1 into the equation:

y= 1x +c

y= x +c

Susbt. a coordinate.

When x=3, y=4,

4= 3 +c

c= 4-3

c=1

Thus, the equation of the line is y= x+1.

4 0
3 years ago
7 over 12 minus 5 over 12 as a fraction in simplest form
poizon [28]

Answer:

1/6

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
A stockbroker earns a commission by a flat fee for each transaction as well as a fee per share. On a particular transaction, the
loris [4]
Clearly, alternative B

y = 0.01x + 7.5
y = (0.01)*5000 + 7,5
y = 50 + 7.5
y = 57.50
8 0
3 years ago
Read 2 more answers
Find the sum of the predecessor of the predecessor of 2987 and successor of the greatest 3 digits number is __________
grin007 [14]

Answer:

3985

Step-by-step explanation:

Note: predecessor means a number before for example  predecessor of 4 is 3. Similarly, successor is a number after for example the successor of 4 is 5.

The  predecessor of the predecessor of 2987  = 2987-2 = 2985

Let 2985 be x

The greatest 3 digit number = 999

And the successor of the greatest 3 digits number would be = 999+1 = 1000

let 1000 be y

We have find  the sum of x and y

= 2985+1000

= 3985

4 0
3 years ago
Other questions:
  • Two trapezoids have areas of 432cm^2 and 48cm^2 . Find the ratio of similarity.
    13·1 answer
  • Which monomial function has a maximum value?
    13·2 answers
  • What is the graph of the absolute value equation y=-2|x|+5
    5·1 answer
  • Please Help (IF YOU CAN) Me With These Geometry Questions
    7·1 answer
  • Find the limit. (If an answer does not exist, enter DNE.) lim Δx→0 (x + Δx)2 − 3(x + Δx) + 2 − (x2 − 3x + 2) Δx
    14·1 answer
  • What is 75/40+16/30+35/40​
    6·1 answer
  • What is the answer for this log2(4x)=5
    15·2 answers
  • If you receive 25% off an item costing $22.00, how<br> much money do you save?
    11·2 answers
  • 3) In 2014 the Cubs won 97 games up from 73 the previous year. Find the percent increase in wins.​
    5·1 answer
  • Help me
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!