Periods<span> going left to right. The periodic table also has a special name </span>for<span> its vertical columns. Each column </span>is<span> called a </span>group. The elements in eachgroup<span> have the same number </span>of<span> electrons </span>in the<span> outer orbital.</span>
Answer:
v = 83.1 % of speed of light
Explanation:
given,
T_e is the earth time = 2.7 s
T_s is the ship time = 1.5 s
we know,

where c is the speed of light
v is the speed of the rock star moving



squaring both side


v = 0.831 c
v = 83.1 % of speed of light
Here is the full question:
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Answer:
a) 0.85 m
b) 0.98 m
c) 0.76 m
Explanation:
Given that: the radius of gyration
So, moment of rotational inertia (I) of a cylinder about it axis = 





k = 0.8455 m
k ≅ 0.85 m
For the spherical shell of radius
(I) = 




k = 0.9797 m
k ≅ 0.98 m
For the solid sphere of radius
(I) = 




k = 0.7560
k ≅ 0.76 m
As it stands now, that statement is false.
There are two ways to make the statement true:
#1). Exchange the places of the words "Opposite" and "like".
#2). Exchange the places of the words "repel" and "attract".
Either ONE of these changes will make the statement true.
Doing BOTH of these changes will leave it false.