Answer:
The correct answer to the question is
B. It always decreases
Explanation:
To solve the question, we note that the foce of gravity is given by
where
G= Gravitational constant
m₁ = mass of first object
m₂ = mass of second object
r = the distance between both objects
If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have
= 
Therefore the gravitational force is halved. That is it will always decrease
Answer:
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points,
Explanation:
To resolve the debate, it must be shown that the two have part of the reason, the space or distance between the two points divided by time is the average speed between the points.
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points, in the only case that it is so is when there is no acceleration.
Therefore neither of them is right.
Answer:
compacting
Explanation:
i don't think there is very much explanation, the snow falls and compacts the ice to become giant lol
Rock layers are folded and appear to be scratched because of the plate tectonics and the glacial advance.
Answer: Option 1 and 2.
<u>Explanation:</u>
Plate tectonics and the glacial advance are the geological phenomenon which have the power to effect the layers of the rock. Because of these, there can be scratches on the layers of the rock and the layers of the rocks can be folded.
The huge mass of ice that is included in the glacier which may be of thickness of three to four kilometers is a lot to scratch the rocks. These glaciers are responsible for moving the rocks from their original position to a new place altogether.