Answer:
1.) Waves carry energy through empty space or through a medium without transporting matter. While all waves can transmit energy through a medium, certain waves can also transmit energy through empty space. ... When waves travel through a medium, the particles of the medium are not carried along with the wave.
2.) Mechanical Waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. Longitudinal waves vibrating in the direction of propagation while Transverse waves vibrate at right angles to the direction of its propagation.
3.) They can carry a little energy or a lot of energy. They can be transverse or longitudinal. However, all waves have common properties—amplitude, wavelength, frequency, and speed. Amplitude describes how far the medium in a wave moves.
I hope this helps!
We shall convert all of the densities to lbs/gal, so the product of
BTU/lbs and lbs/gal gives us the basis of comparison, which was "ratio of energy to volume".
grams / ml x 1 lbs/454 grams → 1 lbs/ 454 ml
1 lbs/454 ml x 3785.41 ml/gal → 3785.41 lbs/454gal
Conversion of g/ml = 8.34 lbs/gal
Looking at each fuel:
Kerosene:
18,500 x (8.34 x 0.82) = 126,517 BTU/gal
Gasoline:
20,900 x (8.34 x 0.737) = 128,463 BTU/gal
Ethanol:
11,500 x (8.34 x 0.789) = 75,673 BTU/gal
Hydrogen:
61,000 x (8.34 x 0.071) = 36,120 BTU/gal
The best fuel in terms of energy to volume ratio is Gasoline.
Gallons required:
BTU needed / BTU per gallon
= 85.2 x 10⁹ / 128,463
= 6.6 x 10⁵ gallons
The type of transformer that is found outside a residential house is :
step-down transformer
In step-down transformer, the secondary voltage is less than the primary voltage, which will reduce the voltage from the primary win.
A run though an open field during a thunderstorm is the answer
First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:

