Answer:
The answer is "
"
Explanation:
Given data:
Initial temperature of tank 
Initial pressure of tank
Diameter of throat
Mach number at exit 
In point a:
calculating the throat area:


Since, the Mach number at throat is approximately half the Mach number at exit.
Calculate the Mach number at throat.

Calculate the exit area using isentropic flow equation.

Here:
is the specific heat ratio. Substitute the values in above equation.

exit diameter is 3.74 cm
In point b:
Calculate the temperature at throat.

Calculate the velocity at exit.
Here: R is the gas constant.

Calculate the density of air at inlet

Calculate the density of air at throat using isentropic flow equation.

Calculate the mass flow rate.

Answer:
The correct option is;
B) Counterproductive
Explanation:
An effective requires adequate preparations, with agenda of the meeting circulated among participants. The items to be discussed should be known before hand by the participants all of whom will have had adequate background information and relevant consultations with their constituencies so as to be able to add effectively to the meeting.
Other attributes of an effective meeting includes;
1. Ensure, notes of the meeting are taken down personally
2. Outside discussions should be made at the parking lot
3. Important decisions or points to be made should have been communicated to other members of the meeting
4. Members to attend the meeting should be well known and list of attendees reviewed
5. Meetings should be kept to schedule
6. Ensure meeting conclusions and decisions are followed up
7. Written agenda should be available
Therefore "winging it" with minimal planning is considered counterproductive.
Answer:
with a square cross section and length L that can support an end load of F without yielding. You also wish to minimize the amount the beam deflects under load. What is the free variable(s) (other than the material) for this design problem?
a. End load, F.
b. Length, L.
c. Beam thickness, b
d. Deflection, δ
e. Answers b and c.
f. All of the above.
Answer:
0.154kg/s
Explanation:
From this question we have the following information:
P1 = 300kpa
T1 = 20⁰c
M1 = 2.6kg/s
For superheated system
P2 = 300kpa
T2 = 300⁰c
M2 = ??
T2 = 60⁰c
From saturated water table
h1 = 83.91kj/kg
h3 = 251.18kj/kg
From superheated water,
h2 = 3069.6kj/kg
The equation of energy balance
m1h1 + m2h2 = m3h3
When we input all the corresponding values:
We get
m2 = -434.902/-2818.42
m2 = 0.15430
m2 = 0.154kg/s
This is the mass flow rate of the superheated steam
Please check attachment for more detailed explanation.
thank you!