Answer:
A = 10 m amplitude
m = 3 kg mass of object
Vm = 5 m/s
w A = Vm where w = omega
w = 2 * pi * f
2 * pi * f 10 = 5
f = 5 / (20 * pi) = .0796 / sec
7.5 × 10¹⁴ Hz is the highest frequency of visible light when wavelengths of visible light range from 400 nm to 700 nm.
The distance a wave travels in one unit of time is known as the wave speed (v).Taking into account that the wave travels one wavelength in one interval,
v=λ/T
Given that T = 1/f, we can write the equation above as,
V = f λ
Given data:
Minimum wavelength of visible light = 400 nm = 4 × 10⁻⁷ m
Speed of light = 3 × 10⁸ m/s
Frequency = c/λ = 3 × 10⁸ / 4 × 10⁻⁷
= 7.5 × 10¹⁴ Hz
To learn more about Frequency: brainly.com/question/16200748
#SPJ4
It is the first one. But if you have this question you are not a little boy
The equation for luminous flux is given as P = 4


E
where P is the luminous flux, r is the distance and E is the illumination. The unit for P is lumen, E is lux and r is in meters. Substituting the given to the equation:
P = 4


E
P= 4


(9.35) = 1057.46 lumens (lm)
The total luminous flux is equal to 1057.46 lumens (lm).
Answer:
Specific heat of brass is 0.40 J g⁻¹ °C⁻¹ .
Explanation:
Given :
Mass of brass, m₁ = 440 g
Temperature of brass, T₁ = 97° C
Mass of water, m₂ = 350 g
Temperature of water, T₂ = 23° C
Specific heat of water, C₂ = 4.18 J g⁻¹ °C⁻¹
Equilibrium temperature, T = 31° C
Let C₁ be the specific heat of brass.
Heat loss by brass = Heat gain by water
m₁ x C₁ x ( T₁ -T ) = m₂ x C₂ x ( T - T₁ )
Substitute the suitable values in above equation.
440 x C₁ x (97 - 31) = 350 x 4.18 x (31 - 23)
C₁ = 
C₁ = 0.40 J g⁻¹ °C⁻¹